Solving $\left|\int_0^\infty{\sin(x^2)}dx\right|$
$$Let\:I=\int_0^\infty{\sin(x^2)dx}$$
Using \(\sin(x)=-\mathfrak{Im}(e^{-ix})\), we get,
$$I = -\mathfrak{Im}\left(\int_0^\infty{e^{-ix^2}}dx\right)$$
Substituting \(\sqrt{i}x = t\) and using this result,
$$I = -\mathfrak{Im}\left(\int_0^\infty{e^{-t^2}}\frac{dx}{\sqrt{i}}\right) =-\mathfrak{Im}\left(\frac{\sqrt{\pi}}{2\sqrt{i}}\right)$$
$$\sqrt{i}=e^{i\frac{\pi}{4}}=\frac{1}{\sqrt{2}}(1+i)$$
Therefore, we have,
$$I = -\mathfrak{Im}\left(\frac{\sqrt{\pi}}{2}\frac{\sqrt{2}}{(i+1)}\right)=-\mathfrak{Im}\left(\frac{\sqrt{\pi}}{2}\frac{\sqrt{2}(1-i)}{(i^2-1)}\right)$$
$$\boxed{\left|I\right| = \frac{\sqrt{\pi}}{2\sqrt{2}}}$$
Comments
Post a Comment